Tuesday, October 2, 2012

Conditionally Reprogrammed Cells Act As Stem-Like Epithelial Cells And Offer Promise For Personalized Medicine


Main Category: Stem Cell Research
Also Included In: Cancer / Oncology
Article Date: 01 Oct 2012 - 0:00 PDT Current ratings for:
Conditionally Reprogrammed Cells Act As Stem-Like Epithelial Cells And Offer Promise For Personalized Medicine
not yet ratednot yet rated
Using a newly discovered cell technology, Georgetown University Medical Center researchers were able to identify an effective therapy for a patient with a rare type of lung tumor. The single case study, reported in the New England Journal of Medicine, provides a snapshot of the new technology's promising potential; however, researchers strongly caution that it could be years before validation studies are completed and regulatory approval received for its broader use.

The patient in the case study was a 24-year-old man with a 20 year history of HPV-positive recurrent respiratory papillomatosis (RRP). RRP is the most common benign neoplasm of the larynx usually due to infection by HPV that is acquired at birth during passage through an HPV-infected birth canal. The standard treatment is surgical removal of the tumors to clear the airway. The patient has had 350 such surgeries and has received chemotherapy for much of his life. In rare instances (three to five percent of cases), RRP can extend below the vocal cords. This patient's clinical course is even more uncommon because it spread into his lungs, a stage which occurs in less than one percent of people infected. There are no effective treatments for this disease stage, which is almost invariably fatal.

"Early on, we recognized this highly unusual case as one that would allow us to try the new technique with the added bonus of potentially helping the patient," explains the study's senior investigator, Richard Schlegel, M.D., Ph.D., chairman of the Department of Pathology at Georgetown Lombardi Comprehensive Cancer Center, a part of Georgetown University Medical Center.

The technology used is one that keeps normal and tumor cells alive indefinitely in the laboratory - which previously had not been possible. In this case, the technique allowed researchers to establish live cultures of the patient's normal and tumor cells (with the patient's consent) so that treatments could be screened for in vitro activity. Within two weeks, the man's cells had rapidly generated to create stable cell cultures allowing Schlegel and his team to screen available drugs approved by the U.S. Food and Drug (FDA) for other uses.

"The patient's disease was rapidly progressing and he had no other treatment options," explains Schlegel. "Before he was asked to participate in this experiment, the patient was planning to enroll in a clinical trial with cidofovir, a drug frequently used to treat RRP, though without proven efficacy when the lungs are involved. The drugs chosen to be screened had shown some activity against certain HPV types."

One of the drugs tested on the patient's living cells was cidofovir, the drug the patient was to receive in the clinical trial. The cidofovir was ineffective in vitro. Another drug, which had been shown previously to be effective and selective against HPV cervical cancers, exhibited only moderate activity at high doses and did not discriminate between normal and tumor cells. A fourth drug, vorinostat (FDA-approved to treat cutaneous T-cell lymphoma), showed activity in vitro with selectivity for tumor cells versus normal cells.

"We talked to the patient and his doctors about what we observed and based on that, the patient was offered vironostat off-label," Schlegel says, explaining that the drug could be given "off-label" because it was FDA-approved for another indication. "We saw encouraging results after just three months with some tumor shrinkage and no new tumors. The patient received the drug for one year resulting in stabilization of the tumors."

The technique used to propagate the normal and tumor cells was described recently in American Journal of Pathology. It relies on the use of Rho kinase (ROCK) inhibitor and fibroblast feeder cells. "In short, we discovered we can grow normal and tumor cells from the same patient forever, and nobody has been able to do that," Schlegel says. "Normal cell cultures for most organ systems can't be established in the lab, so it wasn't possible previously to compare normal and tumor cells directly."

The mechanisms by which these factors induce cell reprogramming and unlimited cell growth are currently under investigation, but efforts to validate this technique with other chemotherapy regimens are underway. Schlegel says teams of researchers from around the U.S. have visited his Georgetown lab to learn the "Georgetown Method," a phrase coined by researchers who provided an accompanying commentary at the time the work was published.

Schlegel says, "Our first clinical application utilizing this technique represents a powerful example of individualized medicine," but, he cautions, "It will take an army of researchers and solid science to figure out if this technique will be the advance we need to usher in a new era of personalized medicine."

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our stem cell research section for the latest news on this subject. In addition to Schlegel, other study authors include Hang Yuan, Ph.D., Scott Myers, M.D., Jingang Wang, Ph.D., Dan Zhou, M.D., Jennifer A. Woo, M.S., Bhaskar Kallakury, M.D., Andrew Ju, M.D., Michael Bazylewicz, M.D., Yvonne M. Carter, M.D., Christopher Albanese, Ph.D., Nazaneen Grant, M.D., Aziza Shad, M.D., Anatoly Dritschilo, M.D., and Xuefeng Liu, M.D., all of Georgetown University Medical Center.
Georgetown University has filed a patent application on the technology described in this paper. The inventors for the patent application include Schlegel and Xuefeng Liu. The research described in the NEJM was funded by a grant to Schlegel from the National Institutes of Health (R01 OD011168).
Georgetown University Medical Center Please use one of the following formats to cite this article in your essay, paper or report:

MLA

n.p. "Conditionally Reprogrammed Cells Act As Stem-Like Epithelial Cells And Offer Promise For Personalized Medicine." Medical News Today. MediLexicon, Intl., 1 Oct. 2012. Web.
2 Oct. 2012. APA

Please note: If no author information is provided, the source is cited instead.


'Conditionally Reprogrammed Cells Act As Stem-Like Epithelial Cells And Offer Promise For Personalized Medicine'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.


View the original article here


Digg Google Bookmarks reddit Mixx StumbleUpon Technorati Yahoo! Buzz DesignFloat Delicious BlinkList Furl

0 comments: on "Conditionally Reprogrammed Cells Act As Stem-Like Epithelial Cells And Offer Promise For Personalized Medicine"

Post a Comment